
Initial Experiences with occam-pi Simulations of
Blood Clotting on the Minimum Intrusion Grid

Peter H. Welch, Brian Vinter and Frederick R.M. Barnes

Abstract—This paper describes our initial experiences of
running simple blood-clot simulations on Grid infrastruc-
ture. The individual simulations are concurrent process
networks programmed in occam-π, containing over ten thou-
sand parallel processes. The Minimum intrusion Grid (MiG)
infrastructure is used to distribute program execution and
result collection automatically across a set of processing
nodes.

Index Terms—grid, simulation, occam-pi, blood-clot,
nanite

I. Introduction

THIS paper describes initial experiences of running
blood-clot simulations on Grid. The occam-π pro-

gramming language [1], [2], [3] is used to program indi-
vidual simulations, that are then distributed for execution
across a Minimum-intrusion Grid [4].

Each blood-clot simulation is a simple one-dimensional
automaton (a pipeline of cells) and represents a hugely
simplified model. Despite this simplicity, useful and in-
formative results have been obtained. This model is
a prelude to more elaborate simulations, specifically of
artificial/biological blood platelets [5] in the context of
project TUNA (Theory Underpinning Nanite Assemblers)
[6]. Current models contain tens of thousands of concur-
rent processes; however, we plan to extend this to the order
of (at least) tens of millions of processes for more elaborate
and realistic simulations in two or three dimensions.

II. TUNA

The TUNA project aims to investigate the emergent
properties of systems containing millions of interacting
agents — nanites or biological organelles (such as blood
platelets). Here, goals are achieved by emergent behaviour
from force of numbers, not by complicated programming
or external direction. Such systems are complex, but not
complicated.

The clotting model and implementation described here
are a gross simplification of what we will eventually re-
quire for TUNA. It is crucial, however, that we have a firm
understanding and confidence in simple models, before at-
tempting more elaborate ones. We would not wish for any
emergent behaviour of the system to be wholly determined
by implementation-specific artifacts, such as programming
errors arising from a lack of understanding.

P.H. Welch and F.R.M. Barnes are members of the Computing
Laboratory, University of Kent, Canterbury, Kent, CT2 7NF, Eng-
land. email: {frmb,phw}@kent.ac.uk

B. Vinter is director of the Nordic Data-Grid Facility and a member of
the Department of Mathematics and Computer Science, University of
Southern Denmark, Odense, Denmark. email: vinter@imada.sdu.dk

Unlike systems developed for traditional embedded and
parallel supercomputing applications, TUNA networks will
be highly dynamic — with elements, such as channels and
processes, growing and decaying in reaction to environmen-
tal pressures with continually evolving internal topology as
the organelles/nanites combine, split and recombine.

To model more directly (and, hence, simply) the under-
lying biological/mechanical interactions, extremely fine-
grained concurrency will be used. Complex behaviour
will be obtained not by direct programming of individ-
ual process types, but by allowing maximum flexibility for
self-organisation following encounters between mobile pro-
cesses — randomised modulo physical constraints imposed
by their modelled environments. We will need to develop
location awareness for the lowest level processes, so they
may discover other processes in their neighbourhood and
what they have to offer. We will need to synchronise the
development of organisms to maintain a common sense of
time.

III. Minimum intrusion Grid

MiG1 is a Grid middleware model and implementation
designed with previous Grid middleware experiences in
mind. In MiG, central issues such as security, scalability,
privacy, strong scheduling and fault tolerance are included
by design. Other Grid middlewares tend to suffer from
problems with at least one of those issues.

The MiG model seeks to be non-intrusive in the sense
that both users and resources should be able to join the
Grid with a minimal initial effort and with little or no
maintenance required. One way to obtain these features is
keeping the required software installation to a functional
minimum, e.g. the software that is required to run MiG
includes only ‘need to have’ features, while any ‘nice to
have’ features are completely optional.

This design philosophy has been used, and reiterated,
so stringently that in fact neither users nor resources are
required to install any software that is MiG specific. An-
other area where MiG strives to be non-intrusive is the
communication with users and resources. Users in general
and resources in particular can not be expected to have
unrestricted network access in either direction. Therefore
the MiG design enforces that all communication with re-
sources and users should use only the most common pro-
tocols known to be allowed even with severely restricted
networking configurations. Furthermore resources should
not be forced to run any additional network-listening dae-
mons.

1 MiG is a non-profit project developed by a group of computer
scientists from the University of Southern Denmark, Odense (SDU).

user
resourceGRID(https)

job (scp)

request job (https)

cleanup (ssh)

results (https)

submit job

Fig. 1. MiG architectural overview

Figure 1 depicts the way MiG separates the users and
resources with a Grid layer, securely accessed through one
of a number of MiG-servers. The MiG model follows a clas-
sic client-server model, where the users and resources are
clients. The servers are the Grid itself, which in the case of
MiG is a set of actual computers, not simply a protocol for
communicating between computers. Upon contacting the
MiG, any client can request either to upload or download
a file. Users can additionally submit a file to the job-queue
while resources can request a job.

The security infrastructure relies on all entities — users,
MiG-servers and resources — being identified by a signed
certificate and a private key. The security model is based
on sessions and as such requires no insecure transfers or
storage of certificates or proxy-certificates as it is seen with
some Grid middlewares.

MiG jobs are described with mRSL (minimal Resource

Specification Language). mRSL is similar to other Resource
Specification Languages, but keeps the philosophy of min-
imum intrusion; thus mRSL tries to hide as many aspects
of Grid computing as possible from the user. To hide fur-
ther the complexities of Grid computing from the user,
MiG supplies every user with a Grid home-directory where
input and output files are stored. When a job makes a
reference to a file, input or output, the location is sim-
ply given relative to the user’s home-directory and thus
all aspects of storage-elements and transfer-protocols are
completely hidden from the user. Users can access their
home-directories through a web-interface or through a set
of simple MiG-executables for use with scripting.

Job management and monitoring is very similar to file
access; so it is also done either through the web-interface
or with the MiG-executables. Users simply submit jobs
to the MiG-server, which in turn handles everything from
scheduling and job hand-out to input and output file man-
agement. An important aspect is that a job is not sched-
uled to a resource before the resource is ready to execute
the job. Resources request jobs from the MiG-server when
they become ready. The MiG-server then seeks to sched-
ule a suitable job for execution at the resource. If one is
found, the job (with its input files) is immediately handed
to the resource. Otherwise the resource is told to wait and
request a job again later. Upon completion of a job, the re-
source hands the result back to the MiG-server which then
makes the results available to users through their home-
directories.

IV. Blood clot modelling

The model used for these simulations is a one-
dimensional pipeline of ‘cell’ processes representing a sec-

tion of a blood vessel. Each cell maintains internal state
indicating whether it contains a ‘clot’. Clots may span one
or more cells and grow by aggregation. The model is time-
stepped by having the cells synchronise on a barrier [7],
which is also used to protect access to shared data.

Figure 2 shows the process network used in this clot
model. Not shown are two additional processes: a
‘generator’ that determines (stochastically) whether a
new clot is generated and, if so, injects it into the pipeline;
and a ‘target’ process that acts as a sink for clots. Every
process (including cells, report cells, the generator, target
and display) is registered with the barrier and accesses the
shared state and running flag (with read/write access in-
dicated by the dashed arrows.

cell cell cellreport.
cell

state array running

display
(display output)

(reporting output)

draw

Fig. 2. Clot model process network

In each barrier-synchronised cycle:
• a new clot is generated with probability p.
• each clot moves down the pipeline at an average speed

proportional to its size.
• if clots bump into each other, they coalesce to form a

single (and larger) clot.
The generation probability p is given as a fraction of

256 (for convenience of simple random number generation).
Thus, 0 means that a new clot is never generated, and 256
means that a new clot is generated every time-step.

The current design requires that all cells synchronise on
the barrier and exchange their state with their neighbours.
Every cell is always active, regardless of whether it contains
a clot. To allow scaling up an intended three orders of
magnitude, future designs will allow processes to resign

from this timing barrier when they become idle.

A. Cell processes

The implementation of the individual cell processes is
simple and effective:

1 PROC cell (BARRIER draw, ...,
2 CHAN CELL.CELL l.in?, l.out!,
3 r.in?, r.out!)
4 WHILE running
5 SEQ
6 SYNC draw -- tick
7 ... I/O-PAR exchange with neighbours
8 ... update local state
9 SYNC draw -- tock
10 ... update externally visible state
11 :

The ‘CELL.CELL’ protocol used for communication be-
tween cells is defined with:

1 PROTOCOL CELL.CELL
2 CASE
3 state; BOOL -- full/empty
4 push; BOOL -- move/no-move
5 pull; BOOL -- move/no-move
6 size; INT -- clump size
7 :

The I/O-PAR communications of state, using only the
above ‘state’ variant, cannot introduce deadlock — all
processes communicate on all their channels in parallel [8].

Other communications, involving the other variants of
the ‘CELL.CELL’ protocol, occur in the “... update local

state” part of the cell cycle. This part moves clots
along, at a (slightly randomised) rate proportional to the
size of the clot. The entire coding is given below, using
three local boolean variables ‘me.full’, ‘left.full’ and
‘right.full’. The first of these is the cell’s current state,
which has been communicated to its neighbours; the latter
two are the states received from its neighbours.

1 IF
2 me.full
3 INT clump.size:
4 BOOL move:
5 SEQ
6 -- compute clump size so far
7 IF
8 left.full
9 SEQ
10 l.in ? CASE size; n
11 clump.size := n + 1
12 TRUE
13 clump.size := 1
14

15 -- decide on move
16 IF
17 right.full
18 SEQ
19 r.out ! size; clump.size
20 r.in ? CASE pull; move
21 TRUE
22 SEQ
23 -- our decision
24 move := decide (clump.size)
25 r.out ! push; move
26

27 -- tell those behind
28 IF
29 left.full
30 l.out ! pull; move
31 move
32 me.full := FALSE
33 TRUE
34 SKIP
35 TRUE
36 IF
37 left.full
38 l.in ? CASE push; me.full
39 TRUE
40 SKIP

Cells are initially in a state where ‘me.full’ is set to
false. If after the state exchange a cell sees that the cell
to the left has a clot (‘left.full’ is true), a ‘push’ is
communicated indicating whether or not the clot moves.
Assuming the clot moved, this is the only place where a
cell changes its state from empty to full.

Once a cell is part of a clot (‘me.full’ is true), it is
either at the head of the clot (and responsible for advancing
that clot), in the middle of a clot, or at the tail-end of a
clot. At each cycle, the length of a clot is measured (by
communicating ‘size’ messages between the clotted cells)
and used to determine whether the clot advances. The cell
that decides this is the right-most one at the head of the
clot, which has ‘right.full’ false.

The cell at the head of the clot outputs a ‘push’ message
indicating whether the clot is to be moved or not. This is
picked up by the next cell along, that must be empty (be-
cause this cell had ‘right.full’ false), that either becomes
full or empty. Similarly, a ‘pull’ message is communicated
to cells behind the head cell, indicating whether the clot
is to be moved. The last cell, that has ‘left.full’ false,
will become empty if the clot moves forward.

This algorithm also handles coalescence when one clot
‘bumps’ into another. The cell at the head of a faster
moving clot, that usually sees ‘right.full’ as false, will
suddenly see ‘right.full’ as true when it reaches the next
clot along. Once this has happened, that head cell becomes
part of the larger clot.

B. Barrier Synchronisation

Barrier synchronisation is expressed in occam-π by its
SYNC primitive [7]. The semantics is that any process try-
ing to synchronise on a barrier will block until all processes,
registered for that barrier, also try to synchronise. Only
when all have synchronised can all continue. In occam-

π, barrier overheads are very low — 4 words per barrier
for memory costs and around 16 nanoseconds runtime per
process per synchronisation (on a 3.2 GHz Pentium IV,
assuming no cache hits).

The current (simple) model described in this paper has
just one barrier, ‘draw’, on which all processes are regis-
tered. Each cycle represents one time unit of the simu-
lation. Every cycle of every process is divided into two
phases, ‘tick’ and ‘tock’, by barrier synchronisation —
see the code at the start of subsection A above. The two
phases are used to coordinate safe access to state shared
between all processes: a state array used for visualisation
of activity in the whole pipeline and a running flag used
for termination — see Figure 2 above.

Rendering of the state array is managed by the ‘display’
process during its ‘tick’ phase. Each ‘cell’ process shares
access to its component of this state array, but only up-
dates that during its ‘tock’ phase (when ‘display’ is not
rendering).

The running flag is set false only by the ‘display’
process during its ‘tick’ phase. Each ‘cell’ process in-
spects this shared flag only during its ‘tock’ phase (when
‘display’ is not changing it).

Thus, the barriers are used to ensure deterministic se-
mantics for the shared data. Access conforms to CREW
(Concurrent Read Exclusive Write) rules, which eliminate
race hazards. For example, when running is made false,
all processes observe this in the same cycle (i.e. simultane-

ously in simulation time) and we have deadlock-free termi-
nation.

A more detailed description of these techniques, includ-
ing the concept of resignation from barriers — necessary
for the lazy evaluation of more complex models — is given
in [7].

C. Reporting

Reporting cells are largely the same, except that the
cell maintains a count of how many consecutive clots are
pushed through it, reporting and resetting this value when-
ever the cell state changes (i.e. when a whole clot enters
or leaves the cell). The output from a particular report-
ing cell includes the reporting cell’s position (along the
1-dimensional pipe), the current time (in barrier ‘SYNC’s),
and the size of the clot (for end-clot reports only). For
example:

clotfixed 1 2000 30 (1073741823) 100

0 74 1

0 75 0 1

100 202 1

100 203 0 1

...

9800 552603 1

9800 552641 0 10

9900 552922 1

9900 552943 0 10

To aid identification, the report starts with a line de-
scribing its parameters. In this case, a probability of 1/256
for a total of 2000 clots, updating the display every 230

frames (i.e. only once), and with reporting cells every 100
along the pipe.

Some basic post-processing is done on this data to pro-
duce surface-plot histograms of clot distribution, described
in section V.

D. Visualisation

Visualisation of the clot model (if desired) is handled by
a ‘display’ process, that reads and displays the shared-
state. The display update frequency is adjustable, de-
pending on the desired resolution. Both text-based and
graphics-based visualisations have been written. Advan-
tages of the graphics display include a faster display update
and the ability to visualise large models (e.g. a 1000x1000
window at 1 pixel-per-cell allows approximately 1 million
cell processes to be visualised).

Figure 3 shows a screen-shot of a visualisation for a
100x50 cell grid (arranged as a 1-dimensional ‘pipe’) us-
ing 16 pixels-per-cell and with a 4/256 probability of clot
injection at the start of the ‘pipe’ (top-left in the picture).

The pipeline is displayed “snaking” down the image,
with the first cell at the top-left, the next cells moving

Fig. 3. Clot model visualisation

right along the first row, then left along the second row,
etc. Reporting cells (that could be shown differently if re-
quired) might typically be placed every 100 cells, i.e. at
the end of each row in the display.

In the early rows of Figure 3, only small (mainly single-
celled) clots are seen. Further down the pipeline (blood
vessel), small randomised variations in their speed have
resulted in them bumping and coalescing into larger and
slower moving clots. Even so, they manage to flow away
fast enough that the faster moving singletons behind them
coalesce into similarly large clots that cannot catch them
and the stream continues to flow.

With higher probabilities of clot injection (not shown in
the above figure), larger clots are formed that move slower
still. Above a threshold (to be found by in silico exper-
iment), these larger clots cannot escape being caught by
smaller clots behind them — which leads to eventual catas-
trophic clotting of the whole system. Further discussion is
postponed to Section V.

E. Blood clot modelling on MiG

The overall blood-clot model experiment is nothing more
than a parameter sweep across a set of probabilities. Thus
the entire experiment can easily be split into a set of in-
dependent jobs, where each job simply represents a single
probability. Since we are running a stochastic model, each
experiment must be run a number of times, in this case we
have chosen 10, to return a trustworthy average.

Running an application on Grid is often quite demand-
ing. In addition to writing the Grid job description, the
binary has to be placed on a storage-element which can
be referred to in the job-description file. To make mat-
ters worse the binary has to match the environment on
the executing resource, CPU architecture, operating sys-
tem and dynamic libraries. Dynamic libraries are an es-
pecially frequent source of problems, but fortunately the
KRoC occam-π complier is able to produce very tight static
binaries. With the model of a user/home-directory in MiG
and the quite portable static binaries of the clot model,
we were able to completely ignore the usual problems with
gridifying the execution.

The next step was to create job descriptions in mRSL.
Since we already knew how to run the jobs manually from

the command line, this was mostly a matter of filling in the
command line information in an mRSL template. Output
files that were explicitly fetched from the cluster in the ini-
tial setup were specified as output files in the mRSL to make
them automatically available in the MiG home directory
after job execution.

::EXECUTE::

./clotbin 1 2000 30 100 1> /dev/null \

2> chance_1-0

::EXECUTABLES::

clotbin

::OUTPUTFILES::

chance_1-0

::CPUTIME::

9000

Fig. 4. mRSL specification for a clot-model run with probability 1

The mRSL script should be easy to understand. The
‘::EXECUTE::’ block holds the commands to be run in the
job, which in this case is ‘clotbin’. The clotbin binary
should be run with the parameters ‘1 2000 30 100’, the
first of which is the probability (as a fraction of 256), the
second is the total number of clots generated at the source,
the third is the display update frequency (as a power of
two), and the fourth is the frequency of reporting cells.
Since we are not interested in the display here (redirected
to the ‘null’ device), the display update interval is set to
30 (approximately every 1 billion cycles).

Under ‘::EXECUTABLES::’, clotbin is listed, meaning
that this file should be copied from the user’s home-
directory to the resource before the execution should
begin, and the executable flag should be set. Under
‘::OUTPUTFILES::’ only ‘chance 1-0’ is listed, meaning
that only that file should be copied to the user’s home-
directory after job-completion. Finally ‘::CPUTIME::’ is
set to 2.5 hours, to ensure that the job will have sufficient
time to complete.

For each probability between 1/256 and 32/256, ten in-
dividual jobs were submitted, with the output filename in-
corporating the probability (1-32) and run-number (0-9).

All jobs were submitted at the same time and thus the
first jobs started running almost immediately while the
last jobs were queued for some time. The resources that
were made available to the clot model experiments differed
from 1.7 GHz Intel Celeron CPUs to, 3.2 GHz Intel Xeon-
64 CPUs. This combined with the varying execution times
of the individual jobs, meant that overall execution times
varied from a minimum of 54 seconds to a maximum of
more than 8 days! The minimum, maximum and average
times for total turnover time, time in queue and time for
execution can be seen in figure 5.

Fig. 5. Execution statistics

V. Results

Initial results from this clot model are encouraging. To
allow some comparison between the different probabilities,
some data-sets have been trimmed-down — once a clot
has become sufficiently large it ‘backs-up’ the system to
the source, advancing relatively slowly.

Figure 6 shows the distribution of clots by reporting-cell
position and clot-size, plotted as a histogram. Note that
graphs are rotated 180 degrees on the horizontal plane,
placing the origin at the far-right.

With an injection probability of 1/256, small clots sur-
vive for a relatively long time — some even making it to
the end of the cell pipeline without bumping into any other
clots! As the clots advance down the pipeline, however,
many will bump into each other and coalesce into larger
clots. This is reflected by the gradual increase in larger
clots, as a function of reporting-cell position (i.e. the graph
traced at the bottom of the horizontal plane). Clot sizes
of 8 are shown to be the most common at the end of the
pipeline for this simulation (10, 000 cells). If the simula-
tion were made for a longer blood vessel, larger clots would
accumulate. Once a sufficiently large clot forms, it will not
be able to exit the vessel before the clots behind it catch
up and merge.

This condition is shown in the frequency plots of figure 6
for injection probabilities 8/256 and above. New clots join
faster than larger clots further down the vessel can move.
The whole system backs-up into one giant clot (that drains
away very slowly once the fixed number of injected clots,
set for each run of the model, has been generated).

Figure 7 shows the maximum clot-size by reporting cell
for each of the probabilities. At a certain point (inter-
preted by reporting-cell position), the system starts to
block. These points are clearly visible in the graph, where
the behaviour of the line changes.

Some injection probabilities (e.g. below 8/256), do not
jam the system — or rather, we have yet to build a system
sufficiently large to jam at those levels. Probabilities above
8/256 jam the system fairly quickly. Note: the maximum
clot sizes are (artificially) limited to 2000 for these runs.

 1

 10

 100

 1000

 10000

 0
 2000

 4000
 6000

 8000
 10000

 0
 20

 40
 60

 80
 100

 1

 10

 100

 1000

 10000

frequency

2000 clots, probability 1/256

reporting position
clot size

frequency

 1

 10

 100

 1000

 10000

 0
 2000

 4000
 6000

 8000
 10000

 0
 20

 40
 60

 80
 100

 1

 10

 100

 1000

 10000

frequency

2000 clots, probability 2/256

reporting position
clot size

frequency

 1

 10

 100

 1000

 10000

 0
 2000

 4000
 6000

 8000
 10000

 0
 20

 40
 60

 80
 100

 1

 10

 100

 1000

 10000

frequency

2000 clots, probability 4/256

reporting position
clot size

frequency

 1

 10

 100

 1000

 10000

 0
 2000

 4000
 6000

 8000
 10000

 0
 20

 40
 60

 80
 100

 1

 10

 100

 1000

 10000

frequency

2000 clots, probability 8/256

reporting position
clot size

frequency

 1

 10

 100

 1000

 10000

 0
 2000

 4000
 6000

 8000
 10000

 0
 20

 40
 60

 80
 100

 1

 10

 100

 1000

 10000

frequency

2000 clots, probability 16/256

reporting position
clot size

frequency

 1

 10

 100

 1000

 0
 2000

 4000
 6000

 8000
 10000

 0
 20

 40
 60

 80
 100

 1

 10

 100

 1000

frequency

2000 clots, probability 32/256

reporting position
clot size

frequency

Fig. 6. Clot frequency by reporting cell position

A. TUNA interpretation

The clotting model presented here is particularly simple.
It has been developed to try out techniques that need to
be matured before the real modelling can be attempted.
Nevertheless, unprogrammed behaviour has emerged that
is encouraging and relevant to our TUNA investigations.

For example, considering the 1-dimensional pipeline as
a capillary in the blood circulation system, these results
reflect certain observed realities. Above a certain length
and clot probability (resulting from tissue damage), such
a capillary always becomes ‘blocked’.

For the introduction of nanites implementing artificial

 1

 10

 100

 1000

 10000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

m
ax

im
um

 c
lo

t-
si

ze

reporting position

1/256
2/256
4/256
8/256

16/256
32/256

Fig. 7. Maximum clot size by reporting cell position

blood platelets, getting the balance right between the stim-
ulation and inhibition of clotting reactions will be crucial
to prevent a catastrophic runaway chain reaction. This
model is a crude (as yet) platform for investigating the im-
pact of many factors on that balance. Addressing these
issues in considered in the final section below.

VI. Conclusions and future work

Despite the particularly simple clotting model, interest-
ing results have been obtained and relevant modelling tech-
niques explored. However, our ambitions in the TUNA
project call for scaling the size of these models through
three additional orders of magnitude (i.e. tens of millions of
processes) and hard-to-quantify orders of complexity. We
will need to model (and visualise) two and three dimen-
sional systems, factor in a mass of environmental stimula-
tors and inhibitors and distribute the simulation efficiently
over many machines (to provide sufficient memory and pro-
cessor power).

We do not believe that simple cellular automata, as de-
scribed in this paper, will be sufficient. We need to de-
velop lazy versions, in which cells that are inactive make
no demands on the processor. We also need to concen-
trate our modelling on processes that directly represent
nanites/organelles, that are mobile and that attach them-
selves to particular locations in space (which can be mod-
elled as passive server processes that do not need to be
time-synchronised). Barrier resignation will be crucial
to manage this laziness; but care will need to be ap-
plied to finding design patterns that overcome the non-

determinism that arises from unconstrained use — see [7].
Successfully building such models will be a strong testing

ground for the dynamic capabilities (e.g. mobile pro-
cesses, channels and barriers) built into the new occam-π

language, its compiler and runtime kernel. Currently,
occam-π is the only candidate software infrastructure (of
which we are aware) that offers support for our required
scale of parallelism and relevant concurrency primitives
(backed up with compiler-checked rules against their mis-
use). We believe that we will need the very high level of
concurrency to give a chance for interesting complex be-
haviour to emerge that is not pre-programmed and, for
the safety critical application we have in mind, closely cor-
responds to reality. We need to be able to capture rich
emergent behaviour to investigate and develop the neces-
sary theories to underpin the safe deployment of Nanite
technology in human medicine and elsewhere. How those
theories will/may relate to the process algebra underlying
occam-π semantics (i.e. Hoare’s CSP [9] and Milner’s π-

calculus [10]) is a very interesting and very open question.
This work will contribute to the (UK) ‘Grand Challenges

for Computer Science’ areas 1 (In Vivo – In Silico [11]) and
7 (Non-Standard Computation [12]).

References

[1] P. Welch and F. Barnes, “Communicating mobile processes: in-
troducing occam-pi,” in 25 Years of CSP, ser. Lecture Notes in
Computer Science, A. Abdallah, C. Jones, and J. Sanders, Eds.,
vol. 3525. Springer Verlag, Apr. 2005, pp. 175–210, to appear.

[2] F. R. Barnes, “Dynamics and Pragmatics for High Performance
Concurrency,” Ph.D. dissertation, University of Kent, June
2003.

[3] F. Barnes and P. Welch, “Prioritised dynamic communicating
and mobile processes,” IEE Proceedings – Software, vol. 150,
no. 2, pp. 121–136, Apr. 2003.

[4] H. Karlsen and B. Vinter, “Minimum intrusion grid – the sim-
ple model,” in Proceedings of ETNGRID-2005, Workshop on
Emerging Technologies for Next Generation GRID (ETNGRID-
2005), June 2005, to appear.

[5] R. Freitas, “Clottocytes: artificial mechanical platelets,”
in Nano-medicine, 2000, available at http://www.imm.org/
Reports/Rep018.html.

[6] S. Stepney, P. Welch, F. Pollack, J. Woodcock, S. Schneider,
H. Treharne, and A. Cavalcanti, “TUNA: Theory underpinning
nanotech assemblers (feasibility study),” Jan. 2005, EPSRC
grant EP/C516966/1. Available from: http://www.cs.york.ac.
uk/nature/tuna/index.htm.

[7] F. Barnes, P. Welch, and A. Sampson, “Barrier synchronisa-
tions for occam-pi,” in Proceedings of the 2005 International
Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA’2005). CSREA press, June 2005,
to appear.

[8] P. Welch, G. Justo, and C. Willcock, “Higher-Level Paradigms
for Deadlock-Free High-Performance Systems,” in Proceedings
of the 1993 World Transputer Congress. IOS Press, Nether-
lands, September 1993, pp. 981–1004, iSBN 90-5199-140-1.

[9] C. Hoare, Communicating Sequential Processes. London:
Prentice-Hall, 1985, ISBN: 0-13-153271-5.

[10] R. Milner, J. Parrow, and D. Walker, “A Calculus of Mobile
Processes – parts I and II,” Journal of Information and Com-
putation, vol. 100, pp. 1–77, 1992, available as technical report:
ECS-LFCS-89-85/86, University of Edinburgh, UK.

[11] R. Sleep, “In Vivo ⇔ In Silico: High fidelity reactive mod-
elling of development and behaviour in plants and animals,”
May 2004, available from: http://www.nesc.ac.uk/esi/events/
Grand Challenges/proposals/.

[12] S. Stepney, “Journeys in Non-Classical Computation,” May
2004, available from: http://www.nesc.ac.uk/esi/events/
Grand Challenges/proposals/.

